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The effect of neglecting anharmonic nuclear motion when it is definitely present

is studied. To ensure the presence of anharmonic nuclear motion a model

was used that was previously refined against experimental data including

anharmonic nuclear motion, and these calculated structure factors were used as

observed data for a multipole refinement. It was then studied how the neglect of

anharmonic nuclear motion and noise in the data affects the usual crystal-

lographic quality measure R, the density parameters and the residual density

distribution. It is demonstrated that the neglect of anharmonic nuclear motion

leads to a characteristic imprint onto the residual density distribution in terms of

residual density peaks and holes, in terms of the whole residual density

distribution and in terms of the number, location and strength of valence shell

charge concentrations (VSCCs). These VSCCs differ from that of the input

model in a way which heavily influences and misleads the chemical

interpretation of the charge density. This imprint vanishes after taking

anharmonic nuclear motion into account. Also the input model VSCCs are

restored. The importance of modeling anharmonic nuclear motion is

furthermore shown by the characteristic imprint on the residual density

distribution, even in the case of a numerically almost unaffected R value.

1. Introduction

In some of our recent charge density studies we experienced

difficulties in appropriately refining the model to a flat and

featureless residual density. In 9-diphenylthiophosphinoyl-

anthracene unreasonably high residual density peaks

remained close to the sulfur atoms (Herbst-Irmer et al., 2009).

The topological analysis of an aluminumphosphanide, 1 (Henn

et al., 2010), showed in addition to the peak and hole at the P

atom an unexpected number of valence shell charge concen-

trations (VSCCs), which was also not in accordance with the

theoretical results. Both problems could be solved by intro-

ducing anharmonic nuclear motion via the Gram–Charlier

expansion (Johnson & Levy, 1974).

The refinement of anharmonic nuclear motion in charge

density studies has already been discussed in the literature

(Kuhs, 1988, 1992; Sørensen et al., 2003; Whitten et al., 2006;

the list is by no means complete), sometimes with contra-

dicting results. Mallinson et al. (1988) claim that anharmonic

nuclear motion can be modeled by density parameters and

therefore should not be simultaneously refined with them, at

least not in the presence of strong parameter correlations.

Restori & Schwarzenbach (1996) state that anharmonic

nuclear motion, libration and disorder cannot be distinguished

from each other by a single X-ray experiment, as all of these

might cause a deviation of the atomic probability density

function (p.d.f.) from a Gaussian shape. The p.d.f. is the

Fourier transform of the Debye–Waller factor, i.e. its real-

space representation. In contrast to their findings, Iversen et al.

(1999) were able to separate anharmonic nuclear motion

effects from electron-deformation effects with the use of only

a single-temperature X-ray data set; however, they deal with

very high resolution (1.7 Å�1), very heavy atoms (Th) and

very low experimental temperatures (9 and 27 K). We

experienced that this separation is also possible with much

lower resolution (1.15 Å�1), lighter atoms (P) and a higher

experimental temperature (100 K) (Henn et al., 2010). Bürgi et

al. (2000) even decompose anisotropic displacement para-

meters into contributions from low-frequency high-amplitude

vibrations and their anharmonicity from high-frequency low-

amplitude motion as well as from inadequately modeled

absorption and extinction using multi-temperature data.

In our study we allow for a general position of the atom

moving anharmonically. We are investigating the effects of

neglecting present anharmonic nuclear motion on the refined

parameters, the residual density distribution and the

topology of the aforementioned aluminumphosphanide

(PAlN2C12H14). Also correlations between density parameters

and thermal motion parameters are monitored and discussed

in detail.



2. Method

2.1. Density parameters and topological analysis

Whereas density parameters are dependent on the para-

metrization, a topological analysis, which gives maxima,

minima and saddle points, is not. It is possible to discuss

topological results without even mentioning the parametriza-

tion of the density. Therefore, a topological analysis of the

electron density is a compact parameter-free description of the

rather complicated distribution and can serve as a basis for a

comparison of electron densities, for example from theory and

experiment or from different density models. As understood

in this sense, a topological analysis is an interpretation-free

method to explore and characterize a density distribution. In

this context we discriminate between density distributions

differing quantitatively and qualitatively. For example, when

the values of the electron density at a saddle point differ for

two models, but in general there are equal numbers of those

saddle points, maxima and minima, the difference is regarded

to be only quantitative. Quantitative differences in the

topology are expected for different models. If, however, the

number of topological objects is different for two models, this

case corresponds to a structural difference. Major occurrences

of this type exist when the number of maxima or saddle points

in the density differs. When a different number of maxima,

minima or saddle points in higher derivatives of the electron

density, like in the Laplacian, appears, we regard this as minor

occurrences. The models, although possibly quite similar in

their parametrization, are then qualitatively different. This

latter case happens, for example, when the topology of two

density models is of the same type but the topology of the

Laplacian, i.e. the number of VSCCs, differs.

2.2. Procedure

To investigate the effects of neglecting anharmonic nuclear

motion although it is present, we employed theoretical data

from a compound containing phosphorus and aluminium. The

‘theoretical data’ were obtained from the final multipole

model of the metallaphosphane Me2Al(�-py)P (space group

P21=c, measured at 100 K with Mo K� up to a resolution of

1.15 Å�1). The experimentally determined �ðIÞ were also used

for the ‘theoretical’ reflection file. For more experimental and

crystallographic details see Henn et al. (2010). We start from a

reference model that includes a Gram–Charlier expansion to

fourth order at the phosphorus atom and to third order at the

aluminium atom. This model fitted best our experimental data.

Calculated structure factors for this model were used in

subsequent refinements as observed structure factors (data set

1). In a second data set, Gaussian noise in proportion to the

square root of the intensity is added to the respective intensity

(data set 2). The procedure of adding noise is described in

detail by Meindl & Henn (2008); the process is controlled and

characterized by the noise-control parameter p1, which was

chosen to be 0.333 throughout. The noise leads to a small

number of negative-intensity observations, which are excluded

from the refinement. The noise was chosen such that it

resembles the noise found in the experiment. The parameters

for the reference model, i.e. the density (coordinates, mono-

poles and multipoles) and thermal motion parameters (Uij,

Cijk, Dijkl), are taken from the experiment.

The refinements were performed using XD2006 (Volkov et

al., 2006) against F 2 with I/�ðIÞ > 0 up to the experimental

resolution of sin �=� = 1.15 Å�1, starting from the correct

reference model and adjusting coordinates, harmonic motion

parameters, anharmonic nuclear motion parameters (in those

cases where these have been refined) to respective order, � for

all atoms, multipoles up to hexadecapoles for P, Al, N and

methyl C atoms, and up to octupoles for the remaining phenyl

C atoms applying a local mirror plane in the phenyl rings, and

bond-directed dipoles for H atoms. Nine � sets for non-H

atoms were refined. For the H atoms � values were taken from

the literature (Volkov et al., 2001). The values for �0 were

taken from the experimental results and kept fixed. The

coordinates of the H atoms were reset to neutron distances to

the corresponding C atoms, and harmonic motion parameters

were set according to Uiso(H) = 1.5Ueq(Cmethyl) and

1.2Ueq(Cphenyl). For the refinements the density and thermal

motion parameters as well as the R-factor (R =

½�ðjjFobsj � jFcalcjjÞ�=�jFobsj) were monitored. Furthermore, a

residual density analysis (Meindl & Henn, 2008) was carried

out for different models to characterize the effects of

neglecting anharmonic nuclear motion and/or noise.

In the following, the density and thermal motion para-

meters are shown and discussed for the different refinements

in the form of tables and pictures. The models employed are

briefly described:

(i) Refinement a is the reference model. The model includes

anharmonic nuclear motion to fourth order for the P atom and

to third order for the Al atom. This model was refined against

data set 1, which excludes noise.

(ii) Refinement b uses a model completely neglecting

anharmonic nuclear motion. The density and thermal motion

parameters are adjusted by a least-squares refinement against

data set 1. This refinement serves to show the pure effect of

neglecting anharmonic thermal motion in terms of density

values, thermal motion values, the R value and the residual

density analysis descriptors d f ð�0Þ, ��0 and egross (Meindl &

Henn, 2008).

(iii) Refinement c uses the same model as a but the

refinement, like refinements d, e and f, was performed against

data set 2, i.e. Gaussian noise is added to the ideal intensities

and a refinement of all density and thermal motion parameters

including full anharmonic nuclear motion is performed.

(iv) Refinement d corresponds to data set 2 (i.e. noisy data).

In this model only anharmonic nuclear motion at the Al atom

is neglected, whereas anharmonic nuclear motion to fourth

order at the P atom is retained.

(v) In refinement e, in addition to the neglect of anharmonic

nuclear motion at the Al atom, fourth-order Gram–Charlier

parameters are also neglected for the P atom while the third

order is still present.

(vi) Finally, refinement f completely excludes anharmonic

nuclear motion. In contrast to b, however, data set 2 is used.

The difference between this model and model c is that model c
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contains all anharmonic thermal motion whereas this model

excludes anharmonic nuclear motion completely.

The situation corresponding to model a is highly idealized

and serves as a reference, whereas the situation described in c

is the optimum one could reach in the laboratory. Model f

corresponds to the realistic situation in which anharmonic

nuclear motion has not been considered although it is present.

It is the situation an experimenter might be confronted with

during a charge density study.

3. Results

3.1. Effect on the crystallographic R value

Table 1 shows the crystallographic R values for all refine-

ments and the reference model.1 The noise was chosen such

that it leads to an R factor similar to the experimental one. In

the absence of noise the neglect of anharmonic motion leads

to a significant increase in the R factor of 0.35% (b). In the

presence of noise, however, the differences are marginal. A

model completely neglecting anharmonic motion (f) leads to

an R value of 1.56%, whereas the complete model including

anharmonic motion to fourth order at the P atom and to third

order at the Al atom results in R = 1.54% (c), with a total

difference of only 0.02%.

3.2. Effect on the residual density distribution and the
topology

Fig. 1 shows a residual density isosurface in the vicinity of

the P atom. The alternating occurrence of positive (green) and

negative (red) residual density (shashlik pattern) seems to be

typical for unmodeled anharmonic nuclear motion (Herbst-

Irmer et al., 2009) of third order. This corresponds to refine-

ment f, the situation one may be confronted with in a charge

density study when anharmonic nuclear motion is not

considered, although present. This pattern was also observed,

although not published, in the experiment leading to the

publication of Henn et al. (2010). The residual density shashlik

pattern disappears after inclusion of anharmonic nuclear

motion Gram–Charlier parameters (refinement c and Fig. 1,

bottom).

Fig. 2 shows the locations of the VSCCs (white spheres)

together with the positions of the largest peak and deepest

hole (red spheres) when anharmonic nuclear motion is

neglected. The peak distances to the P atom and strengths are:

0.50 Å and 0.23 e Å�3 (above molecular plane), and 0.39 Å

and �0.21 e Å�3 (below plane). When noise is excluded

(refinement b) the values are 0.51 Å and 0.24 e Å�3, and

0.42 Å and �0.27 e Å�3. Table 2 shows the influence of

anharmonic nuclear motion on the residual density and the

number, strength and location of VSCCs close to the P atom

for all refinements.

In refinement a there are four VSCCs around the P atom,

which is in accordance with gas-phase optimizations (Henn et

al., 2010). Their positions are depicted in Table 2. For all
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Table 1
Crystallographic R values for the reference model and refinements b–f .

R is given in %. GC: Gram–Charlier parameters.

a b c d e f

Noise ( p1 = 0.333) Off Off On On On On
Third-order GC P/Al Off P/Al P P Off
Fourth-order GC P Off P P Off Off
R 0.00 0.35 1.54 1.54 1.55 1.56

Figure 1
Isosurface representation of the residual density. Top: shashlik pattern
around the P atom, which is located in a nodal plane between the red and
green surfaces at the center; green: 0.088 e Å�3, red: �0.106 e Å�3; the
representation corresponds to refinement f . Bottom: the same isosurfaces
after refinement c. The figure was created using MolIso (Hübschle &
Luger, 2006).

Figure 2
The positions of the largest peak and hole (red spheres) together with the
VSCCs (white spheres around green P atom) in the phosphanide, after
refinement of model f .

1 Table 1 in the supplementary material shows the numerical values of selected
geometry, density and thermal motion parameters of the P atom for the
different refinements together with the estimated standard uncertainties.
Histograms for higher multipoles are also shown (Reference: SH5102).
Services for accessing these data are described at the back of the journal.



refinements not properly describing anharmonic nuclear

motion at the P atom, different numbers of VSCCs (varying

between 5 and 6) are found, none of which correspond to the

correct number of four VSCCs. In Table 2 the values for

r2�ðrVSCCÞ are given additionally, together with the eigenva-

lues of r4�ðrVSCCÞ. For the calculation of the extrema of a

function, it is necessary to calculate the second derivatives of

this function to show the extremal nature at the point in

question; for the Laplacian being the function discussed, this

obviously implies the calculation of the fourth derivatives of

the density with respect to the coordinates. These eigenvalues

of the fourth derivatives are given. Their units are e Å�7. They
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Table 2
The number, location and strengths of the VSCCs and residual density analysis plots for the whole unit cell corresponding to refinements a–f.

Only the VSCCs related to the P atom are shown as white spheres. The numbering in column three is according to the scheme of Fig. 2. The Laplacian r2� is given
at the VSCCs and the eigenvalues �1 , �2 , �3 of the second derivative of the Laplacian with respect to the coordinates.

Refinement r2� (e Å�5); �1 , �2 , �3 (e Å�7) d f ð�0Þ versus �0

a 1: �5.1; 23.7, 50.7, 634.9
2: �5.6; 28.8, 57.0, 667.1
3: �5.3; 68.1, 122.8, 485.3
4: �7.2; 71.7, 141.4, 636.1

b 1: �5.4; 36.0, 58.8, 661.8
2: �5.2; 31.1, 60.3, 646.1
3: �4.5; 64.4, 113.9, 416.4
4: �6.3; 62.4, 134.2, 559.9
5: �3.5; 18.2, 37.9, 533.7
6: �3.7; 13.6, 43.4, 546.7

c Same as a 1: �5.2; 14.4, 60.7, 646.6
2: �5.7; 28.9, 64.0, 677.6
3: �6.6; 90.5, 139.9, 637.7
4: �6.8; 57.7, 141.6, 626.1

d Same as a 1: �5.2; 14.4, 60.2, 645.6
2: �5.7; 28.4, 63.8, 676.5
3: �6.6; 90.5, 140.5, 637.8
4: �6.9; 57.5, 142.0, 626.8

e 1: �5.2; 16.7, 61.2, 650.1
2: �6.0; 30.1, 69.0, 698.2
3: �6.4; 93.0, 136.8, 613.0
4: �6.9; 55.5, 142.5, 624.5
5: �3.0; 8.1, 33.5, 503.0

f 1: �5.2; 19.2, 62.2, 648.1
2: �5.1; 23.5, 61.0, 640.9
3: �5.7; 81.6, 128.5, 543.8
4: �5.9; 46.6, 132.6, 538.8
5: �3.2; 12.2, 38.2, 512.3
6: �4.0; 2.0, 32.3, 569.1



must not be confused with the eigenvalues of the Laplacian

with units e Å�5. Their sum can be taken as a measure of

the distinctness of the extremum in the same sense as for the

Laplacian and its eigenvalues. A particularly low eigenvalue

may indicate that the extremum is actually close to being a

saddle point. The extremal nature of such a point with a low

eigenvalue may be questionable if approximations enter the

procedure. In the last column of Table 2 a residual density

analysis plot of the whole unit cell is shown (Meindl & Henn,

2008). As model a is the reference model without noise in the

data, only a single point is characterizing the residual density

corresponding to an entirely flat and featureless residual

density distribution. The improper description of the anhar-

monic nuclear motion can also be seen in the fractal dimension

plots. Only refinement c, which includes anharmonic nuclear

motion to third order for the Al and P atoms and to fourth

order for the P atom, results in a Gaussian distribution of

residuals, as indicated by the parabolic shape in the residual

density plot.

Refinement f, which neglects anharmonicity completely but

includes experimental noise and multipole expansion to the

hexadecapole level, shows six VSCCs around the P atom in a

distorted octahedral geometry, with one apex above and one

below the molecular plane spanned by the P atom and its

adjacent C atoms. One VSCC is located in each of the

respective P—C bonds, which leaves four non-bonding

VSCCs. Two of these are located approximately in directions

extending the bond directions; the remaining two are at the

apexes. The values range between �3 and �6 e Å�5; the two

smallest values have particularly small eigenvalues �1 and �2

whereas in �3 all six VSCCs are of the same order of magni-

tude. Note that for the calculation of these values the fourth

derivatives of the electron density with respect to the coor-

dinates have to be calculated numerically, which is prone to

errors. The d f ð�0Þ versus �0 plot shows distinct shoulders in

the periphery. Refinement f, where anharmonic nuclear

motion is excluded, shows the same features that we had

noticed in our experimental investigation of 9-diphenylthio-

phosphinoylanthracene and aluminumphosphanide: shoulders

in the residual density distribution and an unusual number of

VSCCs. This distribution should be compared with refinement

b, which gives the values for noise-free data. The shoulders are

largely reduced when third-order Gram–Charlier coefficients

are refined for the P atom (e). Only a small deviation from a

parabolic shape remains in the positive residual density

regime. Simultaneously, one of the VSCCs lying in the C—P

bond extension disappears.

If additionally fourth-order Gram–Charlier coefficients are

refined for the P atom (d), the other VSCC lying in the bond

extension also vanishes. The smallest eigenvalue is now

14.4 e Å�7, whereas before it was 8.1 (e) and 2.0 e Å�7 (f). The

tiny shoulder in the positive residual density regime, however,

remains.

Additional refinement of third-order anharmonic nuclear

motion parameters for the Al atom restores a parabolic shape

in the residual density distribution without shoulders (c). The

values of the VSCCs should be compared with the true values

obtained without noise (a). The comparison shows how the

small noise in the data corresponding to an R value of

approximately 1.5% influences the Laplacian.

Fig. 3 shows schematically the Gaussian p.d.f., modified

separately by the influence of anharmonic nuclear motion

(top: third order; bottom: fourth order). The blue distribution

must be convoluted with the static density distribution to

obtain the final peak and hole. It can be seen from the curve,

however, that the peak and hole will be approximately at the

same distance in opposite directions of the atom from neglect

of third-order terms. In contrast, residual density peaks from

fourth-order terms at opposite directions have the same sign.

Note that residual density peaks on opposite sides and with

opposite signs are exactly what one would expect for the case

of neglecting third-order anharmonic nuclear motion (see

Fig. 3, top). Therefore, the appearance of such peaks and holes

should be taken as a characteristic sign for the possible neglect

of anharmonic nuclear motion. The location of the maximum

of the p.d.f. is shifted by third-order Gram–Charlier contri-

butions (Fig. 3, top). This establishes a correlation between

third-order Gram–Charlier coefficients and coordinates.

Similarly, a correlation between fourth-order Gram–Charlier

coefficients and Uij exists. This can be seen from Fig. 3

(bottom).
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Figure 3
Gaussian probability density function (p.d.f.) (black), deviation from
Gaussian p.d.f. (blue), and resulting total p.d.f. (red) corresponding
to a third-order (top) and fourth-order (bottom) anharmonic nuclear
motion. The parameters chosen are as follows. Gaussian p.d.f.: f ðxÞ =
��1ð2	Þ�1=2 exp�x2=2�2; third-order curve: 0:2 x f ðxÞ; fourth-order curve:
�0:04 x2 f ðxÞ.



In refinement f, the peak (distance 0.51 Å, strength

�0.24 e Å�3) and the hole (distance 0.42 Å, strength

��0.27 e Å�3) on opposite sides of the phosphorus atom and

to a very good approximation lying on a straight line through

the atomic center remained regardless of the density para-

meters as long as anharmonic nuclear motion was not taken

into account. This is a counter-example of the opinion that the

multipole model is in general flexible enough to describe

anharmonic nuclear motion artificially by density parameters.

3.3. Effects on thermal motion parameters

3.3.1. Anisotropic thermal motion parameters, Uij. Fig. 4

shows the six individual components for P with standard

deviations given as error bars. As the errors are very small, the

error bars have been magnified 100-fold. The yellow columns

(reference model a) show the true values, therefore no error

bars are given. The neglect of anharmonic nuclear motion

(dark green, refinement b) introduces an error and slightly

reduces the total harmonic thermal motion as given by Ueq =

1=3ðUC
11+ UC

22 + UC
33) (where C indicates Cartesian coordinates;

for the values in crystal coordinates see Table 1 of the

supplementary material). This small reduction is maintained

for all refinements regardless of whether these include or

exclude anharmonicity. However, all following refinements

include noise and the small reduction may be attributed as

well to the presence of noise. That noise may dominate the

model behavior will be seen again in x3.3.2. Introducing noise

while refining the correct model (red, refinement c) increases

the standard deviation but has no further effect. Switching off

anharmonic nuclear motion at the Al atom (blue, refinement

d) has no distinct effect on the thermal anisotropic displace-

ment parameters or their standard deviations at the P atom.

Switching off the fourth-order Gram–Charlier expansion at

the P atom while refining third-order parameters at the P atom

(light green, refinement e), however, reduces the error bars

roughly by a factor of 0.5. There are two possible reasons for

the decrease in uncertainty: a reduced number of model

parameters (15 parameters fewer to determine) and reduction

of parameter correlation. As already stated it is found that

fourth-order Gram–Charlier coefficients correlate with the

harmonic motion parameters, which are of second order, as

both represent powers of 2 in the coordinates. The reduction

in the standard uncertainties seems to be due to these corre-

lations, as there is no further reduction in the error bars when

the third order is also excluded (purple, refinement f) despite

reducing the model by a further 20 parameters.

In total, a slightly reduced harmonic thermal motion as

expressed by Ueq results for all refinements b–f.

3.3.2. Third-order Gram–Charlier coefficients, Cijk. The

ten components of the third-order Gram–Charlier expansion

at the P atom are given in the order C111, C222, C333, C112, C122,

C113, C133, C223, C233, C123. The yellow column in each block of

Fig. 5 shows the original reference value. The red bar shows

the value after refinement of the full model against noisy data,

the following bar (blue) shows the values after a refinement

(against noisy data) where anharmonic nuclear motion at the

Al atom has been neglected, and, finally, the last (light green)

bar shows the effect of the neglect of fourth-order anharmonic

nuclear motion at the P atom again against noisy data. The

inclusion of (experimental) noise (red) has a distinct effect on

the values, which sometimes even differ in their sign from the

true value (see C222 and C122). The standard deviation that is in

contrast to the Uij given without a magnifying factor varies

over a wide range: in particular C111 and C222 have large

standard deviations, while those for the remaining parameters

are much smaller. Despite the small absolute values, five out of

ten parameters are significantly larger than their respective

standard uncertainty if a 3� criterion is applied. These are

C112, C113, C133, C233, C123. It is remarkable that the details of

the model seem to be of less importance than the introduction

of noise as is indicated by the similar behavior of all models, in

particular where this is in contrast to the true values as for the

components C222 and C122. When the value of one model is
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Figure 4
Thermal anisotropic displacement parameters Uij at the P atom from the
reference model (refinement a, yellow), from refinements excluding noise
in the data (refinement b, dark green), and including noise and different
levels of anharmonic nuclear motion at the P and at the Al atom
[refinements c (red), d (blue), e (light green) and f (purple)]. The error
bars have been magnified by a factor of 100.

Figure 5
Gram–Charlier coefficients Cijk for refinements a (yellow), c (red), d
(blue) and e (light green).



larger than the true value, then all models yield larger values

and similarly for the smaller values.

3.3.3. Fourth-order Gram–Charlier coefficients, Dijkl. The

third-order anharmonic nuclear motion parameters have

already been found to be small; however, not surprisingly,

most of the fourth-order parameters are even smaller. The

reader might doubt whether these small values may possibly

have any impact on the density or residual density at all. Only

because this is indeed the case is the description of these

parameters included. Fig. 6 shows a comparison of the coef-

ficients Dijkl between true values (yellow) and values obtained

from a refinement against noisy data with (red) and without

anharmonic nuclear motion of the Al atom (blue) given in the

order: D1111, D2222, D3333, D1112, D1222, D1113, D1333, D2223, D2333,

D1122, D1133, D2233, D1123, D1223, D1233. The introduction of noise

(red column) has a particular strong effect on component

D2222. Also D2223 and D1122 seem to be affected. The exclusion

of anharmonic nuclear motion at the Al atom (blue) has no

effect on the fourth-order Gram–Charlier parameters of the P

atom. Only four parameters are significant according to a 3�
criterion. These are D1111, D2223, D1122, D1233. If a 1� criterion

was applied, all but the four weakest contributions (D1222,

D1113, D2233, D1123) are significant.

In summary, it must be stated that all the parameter values

for the true anharmonic nuclear motion of the phosphorus

atom are very small.

3.4. Density parameters

To allow for a comparison of the numerous density para-

meters, we use a distance measure between two sets of density

parameters similar to the R value. For this, the absolute

differences of the parameter values from the true values are

added for all multipoles except for the monopole (for an

explanation see further down), i.e. we added the absolute

residuals. The statistical significance of the parameter values is

not considered in this procedure. However, an easy-to-

interpret dimensionless single number is assigned to each set

of multipoles (24 parameters). This number should be as small

as possible in order for the set to be as close to the original

values as possible. For density values identical to the true

values, this measure yields zero. The R values were calculated

for the different multipoles Plm . Rdip denotes the R value of

the three dipoles P1m , Rquad is the R value for the five quad-

rupoles P2m , Roctu is the R value for the seven octupoles P3m ,

and Rhexa the R value for the nine hexadecapoles P4m . For each

multipole Plm the Rlm value was calculated according to the

formula Rlm =
Pþl

m¼�l jPlmðreferenceÞ � PlmðactualÞj. The sum

is obtained according to Rsum =
P4

l¼1 Rlm .

The changes in the monopole are of a different order of

magnitude than the rather small changes in the higher multi-

poles, which describe a shift of density rather than an amount

of density, and therefore have to be treated separately. The

absolute residual sum is given in Table 3 (last row). The

neglect of anharmonic nuclear motion gives a residual sum of

0.262 (refinement b). This value is taken as reference. Noise in

the data and the inclusion of anharmonic nuclear motion allow

for a shift in the parameter values which results in the lower

Rsum = 0.194 (c), i.e. the overall similarity of the multipole

model parameters to the true values has increased. Neglecting

third-order anharmonic nuclear motion at the Al atom slightly

increases the absolute residual sum to 0.195 (d). There is,

however, a jump in the absolute residual sum to 0.249 (e)

when fourth-order anharmonic nuclear motion at the phos-

phorus atom is neglected and an even higher jump to Rsum =

0.302 (f) if additionally the third order is also omitted. These

results show that inclusion of anharmonic nuclear motion at

the P atom is important for obtaining density parameters as

close as possible to the true values, even though the true

anharmonic nuclear motion parameters are very small.

Compare also with Table 2 for the effect on the topology.

The residual sum can further be decomposed into the

contributions from the multipoles (see Table 3). For example,

the total residual sum of refinement b, which gives the pure

effect of neglect of anharmonic nuclear motion, is decom-

posed into the contributions Rdip = 0.043, Rquad = 0.047, Roctu =

0.129 and Rhexa = 0.043. The octupole parameters change as

much as all other parameters together. From the octupoles, in
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Figure 6
Fourth-order Gram–Charlier coefficients for refinements a (yellow), c
(red) and d (blue).

Table 3
Quality measures and parameter residuals of the different refinements.

R is given in %, ��0 = �0;max � �0;min in e Å�3, and egross = 1
2

R
VUC
j�0ðrÞj dr in e.

The integration is over the whole unit cell. �0: residual density; �0;max : largest
peak; �0;min : deepest hole. The R values for the multipole parameters are
dimensionless. For a definition of these and for more information see text. GC:
Gram–Charlier parameters.

a b c d e f

Noise ( p1 = 0.333) Off Off On On On On
Third-order GC P/Al Off P/Al P P Off
Fourth-order GC P Off P P Off Off
d f ð0Þ 2.71 2.70 2.68 2.68 2.68 2.68
��0 0.00 0.58 0.27 0.32 0.32 0.54
egross 0.25 1.69 15.83 15.87 15.91 16.00
Rdip 0 0.043 0.032 0.032 0.035 0.070
Rquad 0 0.047 0.027 0.026 0.060 0.061
Roctu 0 0.129 0.067 0.067 0.068 0.099
Rhexa 0 0.043 0.122 0.121 0.111 0.106
Rsum 0 0.262 0.194 0.195 0.249 0.302



turn, O1þ and O1� contribute over 50% to the total of Roctu =

0.129. However, after inclusion of experimental noise, the

most pronounced changes in the parameters are in the hexa-

decapoles (c, d, e) until anharmonic nuclear motion is again

completely neglected and residuals in the octupoles contribute

as much as from hexadecapoles (f).

3.4.1. Monopoles, M. The monopole is a more fundamental

parameter than the other density parameters, as all higher

multipoles rely on the population of the monopole. The total

neglect of anharmonic nuclear motion and exclusion of noise

in the data results in a decreased monopole (b, dark green in

Fig. 7) in comparison with the true value (a, yellow) and in a

very small standard uncertainty. Inclusion of noise increases

the monopole to higher than the true value (c, red, d, blue, e,

light green). The standard deviations are obviously deter-

mined by the noise. The under- and overestimation of the

monopole seem to compensate when anharmonic nuclear

motion is completely neglected in the presence of noise (f,

purple).

3.4.2. Dipoles. The dipole component D0 of the true model

is close to zero (see Fig. 8). Comparison of the dark green (b)

and the purple (f) bars shows that noise in the data affects the

dipole D1þ and D1� only moderately; however, D0 is

affected most. The orientation of D0 is close to the direction in

which the largest residual density holes and peaks also occur,

above and below the molecular plane spanned by the P and

the N atoms (see Fig. 2). It is therefore reasonable to assume

that the density model tries to compensate for the neglect of

anharmonic nuclear motion by shifting density from the

largest peak to the deepest hole, which are both located close

to the phosphorus atom and almost in opposite directions. This

can be seen in Fig. 8 from a comparison of the noise-free

refinement b neglecting anharmonic nuclear motion (dark

green) and all refinements containing noise and at least third-

order parameters at the P atom (c, red, d, blue, e, light green),

which are all closer to the true value (a, yellow) for D0. For

this dipole D0, the fourth-order anharmonic nuclear motion at

the P atom is also obviously very important, as can be seen

from the jump of the purple bar (refinement f) to a value

differing most from the true value (a, yellow). The flexibility of

the multipole model is not sufficient for a complete compen-

sation of neglect of anharmonic nuclear motion and residual

density peaks remain until anharmonic nuclear motion at least

to third order at the P atom is included (see Table 2). Note that

in this case the inflexibility of the multipole model is an

advantage, as it indicates model errors.

3.4.3. Quadrupoles, octupoles and hexadecapoles. Histo-

grams and additional information for these density parameters

are given in the supplementary material. The higher multi-

poles are increasingly dominated by the noise. It is difficult to

extract general tendencies from these data as the changes

owing to a neglect of anharmonic motion scatter over the

whole parameter set, whose values are additionally dependent

on the orientation of the local coordinate systems. All these

subtle changes together lead to the appearance of artificial

VSCCs around the P atom. No distinct correlations between

multipole parameters and anharmonic nuclear motion para-

meters were observed.

4. Correlation

Strong correlation between model parameters may lead to

insignificant results. In the literature such strong correlations

of 90% and more among thermal motion parameters (U11/

D1111 0.90) and a high correlation between a density parameter

and harmonic motion parameters (P20 correlated with U22 and

U23 of the Fe atom with coefficients �0.90 and �0.93) are

reported (Mallinson et al., 1988). According to Mallinson et al.,

these high correlations prevented convergence in a first

attempt to refine multipole parameters and anharmonic

nuclear motion parameters simultaneously. They solved this

problem by initially refining anharmonic nuclear motion

parameters against high-order data only and, in a subsequent

step, to allow for a simultaneous refinement of all parameters.

In the case of high parameter correlation one has to be very

careful about the conclusions drawn from such a refinement.
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Figure 7
Monopole populations for refinements a (yellow), b (dark green), c (red),
d (blue), e (light green) and f (purple). Error compensation leads to the
best monopole value for the worst model (f).

Figure 8
Dipole populations for refinements a–f . If anharmonic nuclear motion is
neglected completely in the presence of noise, the dipole D0 tries to
compensate for the model shortcomings (see purple bar).



In our studies, however, no such strong correlations were

observed. The largest coefficients found are between 0.85 and

0.82 for Uii and Diiii, i = 1, 2, 3, followed by a correlation

coefficient between 0.76 and 0.70 for coordinates and Ciii (x

with C111 , y with C222 , z with C333) both being in the same

range as monopole and � correlations. Next is the rather small

correlation between Uij=Diiij and Uij=Dijjj in the range 0.68 to

0.65. Generally, we find correlations among coordinates and

third-order Gram–Charlier coefficients as well as between

harmonic motion parameters and fourth-order Gram–

Charlier coefficients, in accordance with their representation

of even and odd powers of x, y and z. The correlation between

Cijk and x, y, z has already been illustrated in Fig. 3. This figure

also illustrates the potential correlation between Dijkl and Uij

and between Dijkl and � or � 0. Since there are no distinct

correlations between anharmonic nuclear motion and density

parameters, and since no convergence problems were

experienced, these were refined simultaneously. After 20

cycles of refinement of all parameters together excluding � 0,
the maximum shift per standard uncertainty was only 10�10.

That this procedure is feasible in the present case in spite of

the experience described in the literature was ultimately

confirmed from the refinements, as the residual density peaks

and holes close to the P atom (see Fig. 2) were not absorbed

into the density model.

5. Conclusion

Anharmonicity and multipole parameters may sometimes be

able to describe the same features; however, if the features are

in reality caused by anharmonicity, the anharmonic refinement

will be superior, even at the given experimental conditions,

which correspond to 100 K data and a resolution of 1.15 Å�1,

as demonstrated in the present paper. As the R values are only

slightly affected by the anharmonic nuclear motion, the

superiority of one refinement over the other cannot be

established by the R factors. A residual density analysis is able

to reveal the different distributions of the residual densities

from the different refinements. Naturally, the refinement is to

be preferred which has a Gaussian distribution of residuals,

appearing as a parabola in the residual density analysis plots.

What causes the differences in the residual density distribu-

tion and how reliable are they? The valence density is mainly

described by relatively few low-order data. The anharmonic

nuclear motion, in contrast, is described by a convolution of

the whole static (pseudo-)atomic density including the core

density with the probability density function describing the

total motion. This affects mainly high-order data. These are

often known to a lower statistical significance which, however,

is counterbalanced by the relative abundance of high-order

data. Thus, if a very large number of high-order reflections are

under- or overestimated by the model, this is of statistical

significance even if every individual deviation is not signifi-

cant. Therefore, provided anharmonic nuclear motion is

present, this is better described by a refinement including

anharmonic nuclear motion than by a model that erroneously

tries to take anharmonic nuclear motion into account by

density parameters. The reasons are (i) even though density

parameters may reduce the absolute height of residual density

peaks and holes generated by the neglect of anharmonic

nuclear motion, the resulting residual density distribution is

non-Gaussian and (ii) even if the residual density distributions

were not too far from a Gaussian, the models affect different

ranges in reciprocal space (low-order versus high-order data)

and therefore tend to separate naturally in the present case. It

can be assumed that both reasons are more important for data

with less noise and with higher resolution. The low noise in the

data may be the most important single reason for the strong

impact of anharmonic nuclear motion parameters in the

present case. Exceptions may occur, for example when the

residual density maxima generated by the neglect of anhar-

monic nuclear motion are at a distance which fits very well to

the maximum of a radial function. But even in this case the

residuals will be distributed differently.

The neglect of present anharmonic nuclear motion results in

a distinct residual density distribution with characteristic

imprint. Neglect of third-order Gram–Charlier coefficients

results in a peak and a hole at opposite sides of the atom in

question. In the present case the distances of these to the

nucleus were typically 0.4–0.5 Å and of about the same

strength, although a tendency can be observed to lower

absolute values for the holes. An isosurface representation of

the residual density typically shows a shashlik-like structure of

alternating positive and negative residual density values with

the atomic position in a nodal plane (see Fig. 1). The plot of

the fractal dimension versus the residual density shows very

characteristic shoulders of a triangular shape superimposed

by the noise (see Table 2, which shows the pure effect of

neglecting anharmonic nuclear motion, refinement b, the pure

effect of noise, c, and the combined effect of neglecting

anharmonic nuclear motion in the presence of noise, f).

If these parameters describing anharmonic nuclear motion

are not included, the refinement yields the wrong number of

VSCCs around the P atom. For a complete neglect of anhar-

monic nuclear motion four non-bonding VSCCs are obtained,

for a neglect of fourth-order parameters three non-bonding

VSCCs are obtained, and, finally, only in the case of full

anharmonic refinement to fourth order is the correct number

of two non-bonding VSCCs obtained. It is expected that this

type of error would be even more distinct for heavier atoms.

The large correlations between density and anharmonic

nuclear motion parameters reported in the literature were not

observed in this case.

The present case is characterized by a very low noise level in

the data, leading to an R factor of approximately 1.5% and by

small anharmonic nuclear motion coefficients. It is a question

for future research whether or not the conclusions drawn from

this also hold in cases where the resolution of the data set or its

quality are lower. As pointed out in x2.1, a topological analysis

may serve as a parameter-free analysis method. To our

knowledge the influence of anharmonic motion modeling on

the density model has been discussed in the literature so far

mainly with respect to (multipole) model parameters. We

suggest employing a topological analysis in future. The most
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important conclusions drawn from this study are: density and

anharmonic nuclear motion parameters separate naturally in

reciprocal space, at least in the present case; even for atoms as

heavy as phosphorus anharmonic nuclear motion affects the

residual density significantly at the given resolution. Both

conclusions lead to the important statement that it is indeed

possible to separate bonding and anharmonic nuclear motion

effects in a single diffraction experiment. Finally, as the

inclusion of anharmonicity affects the crystallographic R

values only slightly, it is more appropriate to analyze the

residual density distribution, which clearly reveals neglect of

anharmonic nuclear motion in charge density studies.
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